Combustion/micropyretic synthesis of atomically thin two-dimensional materials for energy applications

نویسندگان

  • Alexander S Mukasyan
  • Khachatur V Manukyan
چکیده

In recent years progress in the materials research field has been associated with the discovery of graphene and other twodimensional atomic crystals. Those materials uniquely combine many exceptional properties, which make them highly attractive for a variety of applications. Despite significant advancement in synthesis and processing, the relevance of those materials is essentially driven by progress in their production. In the past 3 years, several unique inexpensive combustion-based approaches have been developed to prepare the nanomaterials. This article specifically aims to be an overview of current trends and as a perspective of combustion synthesis of 2D-crystals. We summarized the benefits of extreme combustion conditions for atomic-scale processing and integration of these materials for advanced energy applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices.

Atomically thin two-dimensional materials have emerged as promising candidates for flexible and transparent electronic applications. Here we show non-volatile memory devices, based on field-effect transistors with large hysteresis, consisting entirely of stacked two-dimensional materials. Graphene and molybdenum disulphide were employed as both channel and charge-trapping layers, whereas hexago...

متن کامل

Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures

Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoS...

متن کامل

Atomically thin two-dimensional organic-inorganic hybrid perovskites.

Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D mat...

متن کامل

Two-dimensional transition metal dichalcogenide alloys: preparation, characterization and applications.

Engineering electronic structure of atomically thin two-dimensional (2D) materials is of great importance to their potential applications. In comparison to numerous other approaches, such as strain and chemical functionization, alloying can continuously tune the band gaps in a wide energy range. Atomically thin 2D alloys have been prepared and studied recently due to their potential use in elec...

متن کامل

Broadband Photovoltaic Detectors Based on an Atomically Thin Heterostructure.

van der Waals junctions of two-dimensional materials with an atomically sharp interface open up unprecedented opportunities to design and study functional heterostructures. Semiconducting transition metal dichalcogenides have shown tremendous potential for future applications due to their unique electronic properties and strong light-matter interaction. However, many important optoelectronic ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014